

GPU Implementation for 3D GVF Force Field

Quan Wang, Yu Wang

ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA

November 2010

Abstract: Gradient Vector Flow (GVF) snake is one kind of active contours - curves

that can move within images to find the boundaries of objects. 3D active contours are

also known as deformable models. GVF snake begins with calculating the GVF force

field over the image domain, which will force the snake into concave regions of

original images. Since the calculation of GVF force field usually takes a long time, in

this project we implement the GVF algorithm with GPU, which will accelerate the

algorithm to a great extent.

1 Introduction

Active contours, or snakes, have wide applications in image processing, especially in

detecting boundaries of objects. However, there are two major problems with active

contours. First, we must ensure that the initial contour is close enough to the boundary.

Second, the active contours will not converge to concave regions. The force balance

equation of active contours consists of two parts, the internal force and the external

force. By substituting the external force with GVF force, these two problems will be

well solved.

In 2D scenario, we first define the edge map f(x,y) of an image I(x,y). f(x,y) will be

larger near the image edges. We can define the edge map in one of the following

forms:

2
I(x,y)f(x,y)

 2
I(x,y)(x,y)Gf(x,y) ζ

where is the gradient operator and (x,y)Gζ is a 2D Gaussian function with

standard deviation ζ .

The vector in field f will point to the edges of the image. However, the capture

range is small and in regions where I(x,y) is constant, f will be zero, thus

providing no information about neighbouring edges.

The 2D gradient vector flow (GVF) field is defined as the vector field

v(x,y)=(u(x,y),v(x,y)) which minimizes the energy function

GPU Implementation for 3D GVF Force Field

2

 dxdyfvfvvuuμε yxyx

222222

We can see that in regions where f is large, the energy function is dominated by

the second term, and will be minimized when fv . In regions where f is small,

the energy function will be dominated by the first term, the partial derivatives of the

vector field. Thus minimizing the energy function will yield a smooth vector field.

The energy function minimizing task is equivalent with solving for the following

Euler equations:

0222)f)(ff(uuμ yxx

0222)f)(ff(vvμ yxy

where 2 is the Laplacian operator. With the Euler equations, we can treat u and v as

functions of time and solve for them in an iterative way:

)(x,y)f(x,y)(x,y))(ff(u(x,y,t)u(x,y,t)μu(x,y,t)δt)u(x,y,t yxx

222

)(x,y)f(x,y)(x,y))(ff(v(x,y,t)v(x,y,t)μv(x,y,t)δt)v(x,y,t yxy

222

In 3D scenario, we similarly have the GVF vector field

v(x,y,z)=(u(x,y,z),v(x,y,z),o(x,y,z)), and the iterative solution is

)ff)(ff(u(t)u(t)μu(t)δt)u(t zyxx

2222

)ff)(ff(v(t)v(t)μv(t)δt)v(t zyxy

2222

)ff)(ff(o(t)o(t)μo(t)δt)o(t zyxz

2222

However, the CPU implementation of this algorithm can be extremely

time-consuming, especially when the 3D image is large. In this project, we present a

GPU implementation of the iterative algorithm for GVF force field.

2 Implementation

In this project, we implement a framework to compute the 3D GVF force field with

ITK and CUDA. ITK (Insight Toolkit) is an open-source framework for image

segmentation and image registration, while CUDA (Compute Unified Device

Architecture) is a parallel computing architecture developed by NVIDIA.

GPU Implementation for 3D GVF Force Field

3

2.1 Framework

In this project, we mainly use ITK for reading and writing images, and use CUDA to

implement the GVF iterative algorithm. The input of this framework is the edge map

image, the regularization parameter μ and the number of iterations of the iterative

algorithm. The framework will generate three .mhd and three .raw files as its output,

containing the GVF force field information in three directions.

Figure 2.1.1 Framework of the project.

2.2 Image Reading and Writing

The ITK module requires the input image must be a 3D image with pixel type

unsigned char. The input image will first be loaded as an itkImage. Then we allocate a

memory section for the edge map pixel values. We also allocate three memory

sections for the resulting GVF vector field, which should have float pixel type. Then

we pass the address of the four memory sections, the size of the edge map image

(height, width and frames), the regularization parameter μ, the number of iterations,

the minimum pixel value of the edge map, and the range of pixel value of the edge

map (maximum pixel value minus minimum pixel value) to the CUDA module. The

CUDA module will implement the iterative algorithm and the GVF vector field will

be saved in the three corresponding memory sections.

After the computation, the result will be saved in three vector images, corresponding

to three different directions. Each vector image is saved in a .mhd file and a .raw file,

Framework

ITK CUDA

normalization

initialization

iteration

image reading

image writing GVF field

edge map

GPU Implementation for 3D GVF Force Field

4

with the .mhd file containing the image information and the .raw file containing the

raw data. There are lots of open-source toolkits online for reading such vector images

in MATLAB.

The ITK module is also a good example showing how to access to the CUDA module.

If we have other forms of edge map images, or we do not need to generate vector

image files but want to use the GVF vector field directly, we can write other programs

like the ITK module of this framework, and call the CUDA module.

2.3 Parallel Computing

In our CUDA module, all operations based on pixels are performed in a parallel

manner. The edge map is first normalized to pixel value range of [-1,1]. Then we

initialize the u, v, o for t=0 by setting dx(x,y,z))u(x,y,z, 0 , dy(x,y,z))v(x,y,z, 0 , and

dz(x,y,z))o(x,y,z, 0 .

The iterative algorithm in x direction can be written as

)ff)(ff(u(t)u(t)μu(t))u(t zyxx

22221 .

Setting
222

zyx fffg , the equation above is equivalent to

gfu(t)μg)u(t)()u(t x 211 .

This equation implies that in our iterative process, we can save g)(1 , gf x , gf y

and gf z as four different constants instead of the original g , xf , yf and zf .

The parallel computing process for u can be represented by Figure 2.3.1.

At the beginning of each iteration, we use mirror mapping to handle the boundary

pixels of u, v, and o. That is to say, we set the pixel values of the outermost pixels of

the 3D vector image cube the same as the third outermost pixels of the cube. For

example, we set u(i,j,0)=u(i,j,2).

GPU Implementation for 3D GVF Force Field

5

Figure 2.3.1 Parallel computing process for u.

3 Experimental Results

3.1 Testing Images

We use some of the data images from the 2010 DIADEM Grand Challenge Qualifiers

Round, which is held by Howard Hughes Medical Institute (HHMI). The first image

is one of the Neocortical Layer 6 Axons images, which consists of 34 separate mouse

neocortical layer 6 axons all contained within the same 6 image stacks. The second

image we use is one of the Neuromuscular Projection Fibers images, which consists

of 12 separate mouse neuromuscular axonal projection fibers all contained within the

same 152 image stacks. Both images are cut to size of 512×512×60 pixels.

(a)

(b)

Figure 3.1.1 (a) The 30
th

 frame of Neocortical Layer 6 Axons image; (b) The 30
th
 frame of

Neuromuscular Projection Fibers image.

Initialization Iteration

f

fx fy fz g

fx fy fz 1-g

u(t)

(1-g)u(t

)0

μ▽2
u(t)

u(t+1)

GPU Implementation for 3D GVF Force Field

6

3.2 GVF Force Field

We load the GVF Force Field output files in MATLAB, and plot the vector field in x

direction and y direction of one frame together with the original image of that frame.

We zoom into a smaller region of the image to see more details of the GVF force

field.

(a)

(b)

(c)

(d)

Figure 3.2.1 Part of the 30
th
 frame of the 3D image and the GVF force field. (a) Neocortical Layer

6 Axons image; (b) Neuromuscular Projection Fibers image; (c) Neocortical Layer 6 Axons image

and normalized GVF force field; (d) Neuromuscular Projection Fibers image and normalized GVF

force field.

We can see that the GVF force field points to the center of axons even in background

regions which might be far away from objects.

GPU Implementation for 3D GVF Force Field

7

3.3 Computational Performance

To compare with the computational performance of our GPU implementation of GVF

force field, we also implemented a CPU version of this algorithm, which is written in

C++ and ITK. We define the time cost of this algorithm as the time period beginning

from before the normalization of the edge map image to the end of the last iteration.

We run the GPU version and the CPU version on the Neocortical Layer 6 Axons

image and the Neuromuscular Projection Fibers image for five times, with the

regularization parameter 20.μ for 50 iterations. All operations are performed on

the same computer under same conditions. The results are as following.

Neocortical Layer 6 Axons image Neuromuscular Projection Fibers image

GPU CPU GPU CPU

12.000 538.968 11.891 451.078

11.875 467.172 11.906 450.656

11.953 465.157 11.922 451.047

12.172 465.890 11.875 450.703

12.172 465.219 11.890 450.844

Form 3.3.1 Computational Performance of GPU and CPU implementation

In average, the GPU implementation is 39.93 times faster than CPU implementation

on Neocortical Layer 6 Axons image, and 37.90 times faster on Neuromuscular

Projection Fibers image. The superiority of GPU implementation will be more

obvious as the size of image increases, but that would require larger device memory

of the GPU for enough space to perform the parallel computing.

4 Conclusion and Future Work

In this project, we have developed a framework to compute the GVF force field of a

3D image in a parallel manner. The GVF force field is obtained by an iterative

algorithm, which is implemented on GPU with CUDA. We tested our programs on

two 3D images from 2010 DIADEM Challenge, and got satisfying results. Our GPU

implementation is about 38 ~ 40 times faster than CPU implementation on these two

images, and promises to be more efficient on larger images.

The framework of this project consists of two modules, the ITK module and the

CUDA module. The CUDA module is the kernel of the algorithm, and the ITK

module calls the CUDA module. However, the ITK module only load one edge map

image, perform the GVF algorithm, and save the GVF force field information in six

files. Since writing GVF files, which takes much more time than the iterative

algorithm, might be unnecessary in most applications, more interfaces can be

implemented by calling the CUDA module, and these interfaces can be integrated to

other programs.

GPU Implementation for 3D GVF Force Field

8

References

[1] C. Xu and J.L. Prince, "Gradient Vector Flow: A New External Force for Snakes,"

Proc. IEEE Conf. on Comp. Vis. Patt. Recog. (CVPR), Los Alamitos: Comp. Soc.

Press, pp. 66-71, June 1997.

[2] C. Xu and J. L. Prince, "Snakes, Shapes, and Gradient Vector Flow,"IEEE

Transactions on Image Processing, 7(3), pp. 359-369, March 1998.

[3] The DIADEM Challenge: http://www.diademchallenge.org/.

[4] The Insight Toolkit: http://www.itk.org/.

[5] "The ITK Software Guide," Insight Software Consortium.

[6] "NVIDIA CUDA C Programming Guide," NVIDIA Corporation.

http://www.diademchallenge.org/
http://www.itk.org/

